Send for the NEW Edelstaal handbook exclusively devoted to miniature machining

Miniature Machining Techniques is the only instruction manual exclusively devoted to machining small parts accurately. With over 200,000 books already in use, this is a brand new edition, written by John Burroughs, famous machine tool and workshop author.

Written in easy-to-read, simple "how-to" language, the handbook describes every type of metal machining operation in minute detail, with more complex set-ups or procedures clearly illustrated thru 192 photographs and drawings.

"A complete text that will enable beginner to master the art of precision machine work and model making."

44-PAGE UNIMAT MANUAL IS INDISPENSIBLE FOR THE MAN WHO WORKS WITH PRECISION TOOLS . . .

Here is a practical reference book for

- modelmakers
- inventors
- instrument
- jewellers
- machinists
- architects
- jewelers
- research scientists
- camera & optical repairmen
- craftsmen
- watchmakers
- electronic designers
- R & D technicians

Still only $2.00

Send for your copy of Edelstaal's Miniature Machining Techniques today—Allow 3 weeks delivery, or add 50 cents extra for first class postage.

AMERICAN EDELSTAAL INC. Tenafly, New Jersey 07670 Printed in USA

River Queen Open Column Launch Engine Kit Plans

BOOKLET NO. B-100 $1.00

Published by the EDELSTAAL TECHNICAL INSTITUTE
BUILDING A WORKING-MODEL OPEN COLUMN LAUNCH ENGINE

INTRODUCTION

Working models of old-time steam engines have enduring fascination for anyone interested in mechanics. Building a miniature version of a chugging prime mover of years past is a very satisfying project, and it's a job that even beginning modelmakers can easily accomplish successfully if they work with reasonable care.

Of the many types of engine that utilized steam (beam, oscillating cylinder, slide valve mill engine, etc.), the light open column marine engines widely used in the late 1800s to power small steam launches are perhaps simplest to model. The 1/2"-bore single-acting engine shown on these pages is an engine of this type.

Launch steam engines ordinarily were built with single vertical cylinders supported on four upright columns, or pillars, with the connecting rod crank-driving a short main shaft fitted with a heavy small-diameter flywheel. This arrangement permitted mounting the engine low in the hull of the launch with the engine shaft the kit. A machined copper or brass elbow fitting can be used to make the bend in the steam line.

If you want to mount your engine for display, cut a 3/4"-thick walnut block with 10 degree edge-bevels for a sub-base. Routing recesses in this block for the nuts and screw-heads on the bottom of the engine's baseplate will permit mounting the model flat on the block. After sanding the wood smooth, give the sub-base two coats of flat varnish or flat black paint and secure the engine on its base with small dabs of epoxy.

Edelstaal material kits for more advanced model steam engines machined from castings are available, and the line also includes model cannon kits and other interesting projects that can be machined on your Unimat. See these new kits at your Edelstaal dealer, or write to American Edelstaal, Inc., 1 Atwood Avenue, Tenafly, New Jersey 07670, for literature.

© Copyright 1972, EDELSTAAL TECHNICAL INSTITUTE

Here's the finished engine
Bend the rod to clear the crank disc.

The engine's direction of rotation can be reversed by interchanging inlet and exhaust lines.

If you want to paint your engine, paint the baseplate, valve housing and front bearing block with a spray can, leaving all other parts bright-finished. The color traditionally used on steam engines was flat medium-olive-drab green.

Small steam engines have surprising power for their size, and a 1/2-bore engine will drive a model boat up to two feet long. To mount the engine on stringers in the hull of a model launch, bolt two lengths of angle stock to the bottom of the baseplate and bolt these mounting fittings through the stringers.

Don't hesitate to modify the design of this engine to suit yourself. If you prefer a more closely-coupled engine, simply shorten the baseplate and shaft. If you prefer brass bearing blocks, substitute brass for the steel supplied in the materials kit includes cut metal for all parts, screws and drawings.

The materials kit includes cut metal for all parts, screws and drawings.

The materials kit includes cut metal for all parts, screws and drawings.

The materials kit includes cut metal for all parts, screws and drawings.

aligned with the craft's propeller shaft. The slow-speed engine then could drive the propeller directly through a flexible coupling. A coal-, cordwood- or oil-fired boiler (burning the fuel most readily available locally) mounted amidships supplied steam to the engine at around 150 lbs. working pressure, with a valve in the steam line serving as a throttle. Probably the most familiar example of a steam launch of this kind is the River Queen.

These launch engines were not particularly efficient — their boilers consumed about 1 1/2 lbs. of coal per horsepower per hour but they were robust and reliable. Engines of this type remained in use until early in this century, when the internal combustion engine made the picturesque steam launch obsolete.

The simplified model launch engine this booklet describes was designed especially for novice machinists to machine on the Edelstaal Unimat. All parts can be readily machined from metal in stock shapes, and the easy-to-fit rotary valve on the engine's shaft makes the many small parts other types of valve require unnecessary. The materials kit for the engine, which includes rough-cut metal for all parts together with all fastenings, is lower in price than engine kits with ready-machined components.

Although the parts drawings give exact dimensions, it isn't necessary to machine this engine's parts to close dimensional tolerance. Instead, parts can simply be machined to fit. For example, the cylinder bore needn't measure exactly 1/2" in diameter; it can be slightly larger or smaller than nominal size provided the piston fits the bore. Similarly, the exact size of the valve housing's bore isn't important provided the valve is turned to closely fit the housing.
CONSTRUCTION

Begin with the engine's shaft. The stock supplied is proper diameter and ready for polishing. With the Unimat set up as a lathe, chuck the shaft and centerdrill one end. Then, gripping one end of the stock in the drill chuck and supporting the centerdrilled end with the tailstock center, polish the shaft smooth with very fine 600-grit silicon carbide paper, removing no more metal than necessary.

Next turn the flywheel, which is machined from 1 1/2"-diam. steel. Grip the stock securely in the Unimat's 3-jaw chuck, tapping it as you tighten the chuck's jaws until the outer end runs true, and face the wheel's side. Since steel is a hard-to-cut material, sharpen the lathe's tool bit needlesharp. Set the tool at a right angle to the work and feed the facing cuts from the center out, using the Unimat's slowest spindle speed and taking very light cuts (about .002" deep, or one mark on the feed handwheel's hub) to avoid chatter. If you have a slow-speed attachment for your Unimat, you can use still slower spindle speed and take deeper cuts. Turning shallow recesses in the sides of the wheel as shown in the photos improves its appearance.

After finish-turning the wheel's diameter for half its width, reverse the work in the chuck and face the opposite side similarly. Then centerdrill and drill a pilot hole through the wheel with an 1/8" twist drill held in the drill chuck mounted on the Unimat's tailstock, drilling at slowest spindle speed. Withdraw the drill frequently as the hole deepens to clear chips from the flutes and flood the hole with light machine oil. Then enlarge the 1/8" pilot hole with a 3/16" drill, using a new drill to avoid drilling the hole oversize. To drill the hole for the flywheel's setscrew, set the Unimat up as a drill press and grip the wheel in the machine vise.

With the flywheel fixed on the end of the shaft with its setscrew, chuck the shaft in the lathe and true the flywheel's diameter with a very light finishing cut. Then polish the wheel with fine abrasive cloth.

Next thread the opposite end of the shaft with a 10-32 die for the screwed-on crank disc. (If you lack the 10-32 tap and die, turn the shaft end to a shouldered tenon that can be inserted the centerline for each groove through the top port. Hold the scriber against the cylinder side of the port to scribe the inlet groove's centerline and against the flywheel side of the port to scribe the exhaust groove's centerline. Each groove runs half-way around the valve. Establish beginning and ending points for each groove as shown in the valve operation diagram. The steam inlet groove provides a steam passage that connects the side inlet port with the top cylinder port during the first half of each revolution of the valve. The steam exhaust groove provides a steam passage that connects the top cylinder port with the side exhaust port during the second half of each revolution of the valve.

If you have an indexing and dividing head for your Unimat, you can mill these two grooves with nice precision using a 1/16"-diam. miniature end mill. Lacking the indexing head, you can cut the grooves satisfactorily by hand using a hacksaw blade and knife-edged file. The two grooves should have square rather than V-shaped cross-section. Avoid marring the working surface of the valve as you cut them.

FINAL ASSEMBLY

Now begin final fitting. Screw the valve assembly and front bearing to the baseplate. Then screw the four hexagonal supporting columns into the bottom of the cylinder and lower the cylinder assembly over the crank disc. This done, measure the proper length for the connecting rod, which should be cut to fit. With the piston just clearing the cylinder head and the crank disc's pin at top center, measure the distance between the piston's wrist pin and the crank pin, center to center. Drill 1/8" holes spaced this distance apart in the 1/16"-thick stock supplied for the connecting rod and then grind or file the rod to the profile shown. Bending the rod to a slight offset allows it to clear the crank disc. Shorten the crank pin with a file just enough to clear the columns.

Timing the engine is simply a matter of holding the piston at top dead center and rotating the valve on the engine's shaft until the leading end of the valve's steam-inlet groove can be seen through the top cylinder port. Lock the valve in this position with its setscrew.

Finally, cut to length and thread the
blocks will be at identical height. Use slowest spindle speed when drilling the blocks, first drilling small pilot holes and then enlarging the pilot holes with progressively larger drills. The bearing block has a 3/16" hole. The hole in the valve housing is 5/16" in diameter and must have a smooth finish. Drill this larger hole slightly undersize and then ream it, using either a chucking reamer or a 5/16" end mill run at the Unimat's slowest spindle speed. Squirt on cutting oil liberally when drilling or reaming steel.

When the blocks are bored, set up the Unimat as a drill press and drill the three steam ports in the valve housing block. Locate the top port, which supplies steam to the cylinder, on the block's centerline. The centers of the two side ports, inlet and exhaust, are offset 1/16" from the block's centerline. The exhaust port is offset 1/16" towards the flywheel end. After tapping these three ports 6-32, carefully scrape away burrs left inside the valve housing's bore.

Then turn the valve to an accurate sliding fit in the valve housing. Finish the working surface of the valve carefully, taking very light cuts with a sharp lathe bit and reducing diameter very gradually until the valve turns freely in the housing but has no play. For satisfactory seal the valve must fit the housing's bore precisely. (If you should cut the valve too small, try again with a new piece of steel.) When the valve fits, face the end and shoulder and drill the 3/16" center hole before removing the part from the chuck. Then reverse the valve and face the opposite end.

With the valve drilled and tapped for its 4-40 setscrew, slide the valve housing, valve and front bearing block on the engine shaft and clamp the assembly temporarily in place on the baseplate, making sure that the shaft aligns with the plate's centerline. Mark locations for mounting screw holes on the two blocks through the holes in the baseplate. Drill and tap the holes in the blocks 4-40. Always use cutting oil when tapping steel.

Next screw the valve assembly on the plate and mark the valve's two steam passage grooves, rotating the valve in its housing and lightly scribing through the hole in the crank disc and riveted over.

Turn the hubbed crank disc from the piece of mild steel supplied and drill and tap its center hole 10-32. To drill the offset hole for the crankpin, set up the Unimat as a drill press and grip the disc in the machine vise by its hub. Tap the pin hole 6-32. Then screw the crank disc firmly on the shaft, stake the threads (or smear them with filled epoxy cement) to prevent unscrewing, and with the shaft chucked in the drill chuck on the lathe spindle, true the disc with very light finishing cuts and polish it with fine abrasive cloth. Then thread the end of the crank pin and screw it into the disc, staking the pin's threads similarly. Leaving the pin overlength will permit trimming it to exact length when the engine is assembled.

It's important to make sure before machining the engine's cylinder that the lathe headstock is precisely aligned with the bed, since it would be impossible to fit the piston satisfactorily in a tapered cylinder bore. Also before turning the cylinder, chuck the length of 1/2"-diam. steel included in the kit (both piston and valve are cut from this stock) in the Unimat's 3-jaw chuck, face one end, and take a very light trueing cut on the stock's diameter the length of the piston, removing no more metal than necessary. Smooth off burrs and polish the turned surface with fine abrasive cloth. This stock now can be used as a plug gauge for boring the cylinder, after which the piston will be staked and cut off.

The cylinder is turned from free-machining aluminum. First turning a short 3/4"-diam. tenon that can be gripped in the 3-jaw chuck on one end of the aluminum slug and centerdrilling the opposite end for the lathe's dead center will simplify turning the cylinder's outer diameter and central recess.

After turning, bore the cylinder without removing it from the chuck. Drill through the work lengthwise with a 3/16" drill, using slowest spindle speed and withdrawing the drill frequently to clear chips. Then enlarge the hole using successively larger drills to about 3/8" in diameter. Finally, finish-bore the hole accurately to size — until the piston fits with close sliding fit — with a boring tool. (If you lack a boring tool for your Unimat, you can
grind one from a blank tool bit or length broken from an old round or triangular file.) As the bore nears finish size, set the Unimat's carriage movements up snugly and feed the final cuts slowly and continuously to machine the cylinder wall to a perfectly smooth finish. Work patiently, taking extremely light final cuts to fit the piston as carefully as you can for the piston has no rings and must fit the bore closely. When the cylinder is bored, turn off the chucking tenon.

Next complete the piston, slotting it and cross-drilling for the wrist pin. You can saw the slot for the connecting rod using a sitting-saw blade mounted on the Unimat's saw arbor, or you can do the job satisfactorily by hand with a fine-toothed hacksaw blade.

That done, turn the aluminum cylinder head, which has a locating boss that should closely fit the cylinder bore. Having turned the heads satisfactorily, lay out centers for six screw holes, spacing them equally on a 3/4"-diam. circle with dividers and centerpunching lightly. Convert the Unimat to a drill press and grip the head by its boss in the machine vise to drill these six 7/64" holes. Then use the drilled holes as a template to locate matching No. 43 holes in the top of the cylinder. Drill the holes in the cylinder as deep as possible without breaking through the end shoulder and tap them 4-40, starting the threads with a taper tap and finishing them with a bottoming tap. (Lacking a bottoming tap, you can simply grind off some of the tapered end of the taper tap.)

Next make the engine's steel baseplate. The edges and rough-cut ends of the plate can be faced by roughing it in the lathe chuck and facing each side, or you can surface-grind the engine baseplate with a cup grinding wheel. The easiest way to bore the holes through the baseplate is to set up the Unimat as a horizontal boring mill, mounting a drill in the drill chuck on the lathe spindle and clamping each block in turn squarely on the carriage with a pipe clamp. This will inscribe accurate centerlines to the drill holes. Set the Unimat as a drill press and grip the plate in the machine vise with its top face flush with the vise jaws. Drill the holes at the Unimat's slowest spindle speed.

Having drilled the plate, use it as a template to mark locations of the four tapped holes in the bottom of the cylinder for the four support columns. Drill these holes with a No. 38 drill, taking care not to drill through the cylinder's end shoulder, and tap the holes 6-32. Use a bottoming tap or ground-off taper tap to thread these holes full-depth.

The four hexagonal steel columns supporting the engine's cylinder have turned-down ends threaded to shoul- ders. Threading the column's ends will be quite easy if you have a thread-chasing attachment for your Unimat. Lacking the thread-chasing attachment, you can thread the ends by hand, using a 6-32 die if you reverse the die after the threads are well started to cut them close to the shoulder. If you have difficulty threading the columns, simply turn them off square, drill and tap the ends, and cement in studs cut from 6-32 screws with filled epoxy ceme- ment.) Having threaded the top ends, measure and mark the length of the columns from the top shoulder and turn and thread the bottom ends. The four columns must be exactly equal in length, shoulder to shoulder, to support the cylinder equally.

You can finish-machine the engine's front bearing and valve housing blocks by gripping the rough stock in the lathe's 4-jaw chuck and facing each side, or you can surface-grind the blocks with a cup grinding wheel. Then turn the finished surfaces, measuring carefully and using a small square to.
kits you can build.
With a little love.
(And a little lathe).

These unique and beautiful kits were designed by the same people who make the Unimat precision lathe, and every one is a masterpiece of design and engineering. For the beginning Unimat user, these kits are an ideal way to become familiar with the Unimat, its accessories and machining techniques. For the skilled hobbyist, they offer a rewarding challenge.

Every kit contains pre-cut, ready-to-machine metals, instruction booklet and easy-to-follow drawings. For the amateur or the pro, there's a kit to match your skills.

K-100 River Queen Launch Engine
This is the perfect kit for the fledgling machinist. It's simple, easy to make, yet gives a real working model of the kind of engine used to power small steam launches in the late 1800's. Wt. 18 oz.

K-200 Steam-powered pickup truck
Steam-powered pick-up truck actually operates, is only 4 1/4" long, comes complete with engine, boiler and gear drive.
Kit includes a model pick-up truck, rough-cut bronze and stainless steel for all parts and fastenings, plus complete plan drawings and step-by-step instruction book to construct the model. Not for beginners. Wt. 28 oz.
FRONT BEARING

ROTORVALVE

VALVEHOUSING

BASEPLATE

SECTIONSTHROUGHVALVE
ANDVALVEHOUSINGAT
GROOVEBandPORTB

POSITIONJ
VALVEOPENING
TOADMITSTEAM
tOCYLINDER

POSITIONK
POWERSTROKETEAMFLOW
TOCYLINDER

POSITIONL
STEAMVALVE
JUSTCLOSED—
NOSTEEAMFLOW

POSITIONM
NOSTEAMIN

POSITIONL
PISTON,CONNECTINGROD
ANDCRANKDISCSHOWING
RELATIVEPOSITIONSOFPISTONANDVALVE

SECTIONSTHROUGHVALVE
ANDVALVEHOUSINGAT
GROOVEAandPORTA

POSITIONJ
EXHAUSTVALVE
JUSTCLOSED—
NOSTEEAMFLOW

POSITIONK
NOSTEAM
EXHAUST

POSITIONM
EXHAUSTFLOW

ALLVIEWSFROMCYLINDERENDOFEN-
GINELOOKINGTOWARDSFLYWHEEL.DIA-
GRAMS SHOW ClockWISE ROTATION WITH
STEAM INLETAT LEFT AND EXHAUSTAT

RIGHT, VALVE HOUSING'S TOP PORT IS
CONNECTED TO THE CYLINDER BY THE
STEAMLINE. THE VALVE IS FIXED ON THE
SHAFTANDROTATESASTHEENGINERUNS.

ASSEMBLY