Building a Twin Cylinder RACING GAS ENGINE

Here's a Model Craft project that will challenge the interest of all model makers. First of 2 parts.

By GARY MOORE
Craft Print Project No. 61

THERE is something about the building of a high speed miniature racing engine that appeals to every modelmaker. Perhaps the appeal lies in overcoming the many problems involved in its construction or in accomplishing the precision machine work required. Whatever the fascination, the undertaking is an interesting one.

Building a two-cylinder working miniature gas engine from the ground up is a big undertaking. The wood patterns and complicated core boxes needed in having the castings made will be far more difficult to turn out than all the machine work on the little engine itself. The modelmaker who is not so well versed in pattern making can work from a set of ready made castings, as I did in building the engine shown in the photograph, Fig. 1.

The rough castings from which the engine was built are shown in Fig. 2. Wherever possible the castings were made of the light and hard aluminum alloy, Dural. This was done to keep the weight of the finished engine at a minimum. However, some of the smaller castings were made up in bronze where it was felt this metal would be necessary.

The building beyond the scope of the shop can be accomplished by the modelmaker, from Fig. 1, with this reason to build patterns and give the beginning work and skill the set and help the skill and experience acquired.

The photograph...

4

The under block and cylinder case pattern was such that it allowed it to be cast hollow for the cylinder liners, dowel, bearing, shaft, water gallery, oil injection space, transmission passages, etc. In the upper photo, Fig. 4, you can see this same pattern with some of the necessary cores used in casting the various parts. The interior of the cylinder block and cylinder case shown in Fig. 5 each shows the formation and cylinder patterns and the core box for the various parts.

Fig. 5 shows the various smaller parts. The main center and rotary valve, oil gallery, the upper right hand part, etc. needed for each cylinder part. The make-up of the connecting rod.

SCIENCE AND MECHANICS

JUNE, 1946
metal would serve the purpose best. All these castings were made from the patterns and core boxes shown in the photos Figs. 3, 4 and 5.

The building of patterns and core boxes is beyond the scope of this article, but the work can be accomplished, by the experienced modelmaker, from the accompanying drawings. For this reason the complete set of professionally built patterns and core boxes is shown. It will give the beginner a good idea of the amount of work and skill required in constructing a similar set and help him decide whether or not he has the skill and experience to tackle the job.

The photograph, Fig. 3, shows the main cylinder block and crank-case pattern with its various core prints to allow it to be cast hollow for the cylinder liners, crankshaft, water circulation space, transfer passages, etc. The photo, Fig. 4, shows this same main pattern with some of the necessary core boxes used in casting the various parts of the interior of the cylinder block and crank-case housing. It also shows the flywheel and cylinder head patterns and the core box for the cylinder top.

Fig. 5 shows the patterns and core boxes for the various small parts which are cast in bronze. The main center bearing, which also acts as a rotary valve, is shown by the two half-discs in the upper right corner along with the core box needed for casting the hollow intake ports in this part. The main end bearings, the rotary valve, the connecting rod and timer patterns can be easily recognized, but the large black core box and the small circular part below it are not so easily made out. This is the pattern and core box for the pistons, and quite a fine job it is, for they must be made just so, with the proper wall thickness on the upper part to receive the rings while the lower skirt must be thinned down to reduce the weight of these reciprocating parts. The bosses for the wristpin must be cast on the inside and of course this must be allowed for in the core box. It can be readily seen from these photos that the patterns are complicated and their construction a little beyond the ability of the beginner who is not well experienced in the art of pattern making. When I had a set of castings, I studied them well and compared them with the blueprints until the working of the little engine was thoroughly understood. Then, and only then, the machine work was started.

As many of the engine's smaller parts are fitted to the main cylinder block, it seemed best to start the machine work on this main casting. It was first cleaned up slightly with a coarse file so it would sit level on the faceplate where it was firmly bolted, as in Fig. 6. Here the top of the casting was machined to proper height and faced smooth to form a compression-tight joint for the cylinder head. The position of the casting was shifted off-center on the faceplate, as in Fig. 7, where the holes for the cylinder liners were bored.

The photo shows a heavy steel disc mounted on the faceplate as a counterweight to balance the off-center work. This is good lathe practice as the boring can be accomplished at higher speeds and greater accuracy obtained. When one hole was bored accurately to size the casting was shifted properly centering the other cylinder.
hole, and this, too, was bored to match its mate exactly.

The casting was then mounted on an angle plate which was fastened to the cross slide of the lathe in place of the compound rest, as in Fig. 8, where the main bearing holes were accurately bored to receive the end bearing plates. This was accomplished by mounting a homemade boring bar between centers, driving it with a lathe dog and moving the work to the cutter by the carriage hand wheel. Light cuts were taken, the tool bit being adjusted several thousandths between cuts until the proper diameter was obtained. The work was then mounted on an expanding mandrel, as in Fig. 9, where the ends were faced

smooth to receive the end bearing plates.

The cylinder liners, made up from a cored stick of cast iron, were undertaken next. A solid bar can be used as well but it will require drilling before boring and will take slightly more work to complete than the cored piece. This was chucked in the three-jaw, as in Fig. 10, where the cylinder hole was bored smoothly and accurately to size. First a heavy roughing cut was taken to get under the oxide scale, and this was followed by several light cuts with very fine feed. The boring tool was freshly ground and keenly honed and a very fine power feed used for the final cut in the bore.

The work was then mounted on a mandrel held between centers, as in

1. Main Bearing
2. Cylinders
3. End Bearing
4. Piston (2)
5. Upper Cover
6. Lower Cover
7. Connecting Rod
8. Flywheel
9. End Bearing
10. Inspection
11. Cylinders
12. Pipe Plug
13. Timer Lever
14. Timer Governor
15. Crankshaft
16. Valve-clip
17. Valve-opener
18. Wrist-pin
19. Wrist-pin
20. Cam
21. Timer Housing
22. Timer Rod
23. Timer Lever

Fig. 11, which was then turned to obtain the cylinder block. The cylinders were made in several thousandths of an inch, the light cuts were taken with a fine feed, carefully checking the press fit in the block.

If the liner did not press in the cylinder bore, it was expanded slightly.
Fig. 11, where the outside of the sleeve was turned to exact diameter for a press fit in the cylinder block. Here again heavy roughing cuts were made to get the work down to within several thousandths of finished diameter. Then very light cuts were taken under a very fine power feed, carefully bringing the diameter to a good press fit in the cylinder bore.

If the liners are chilled, to shrink them, and the cylinder block heated in hot water, to expand it, the liners can be quickly pressed in place between the jaws of a heavy vise. When the casting cools and shrinks around the liners they will be held permanently in place.

Machining the cylinder cover was a simple lathe job accomplished by chucking in the four-jaw, as in Fig. 12, where the lower surface was faced smooth and to proper thickness for mounting on the cylinder head. This is a typical shaper job, but where a lathe is the only machine tool in the shop it can be made to serve as well. In mounting the casting in the chuck the work was...
ARMSTRONG
TOOL HOLDERS and TOOLS

Standard Wherever Metal Is Machined

Over 95% of the machine shops and tool rooms use ARMSTRONG TOOL HOLDERS, because each is a permanent, multi-purpose tool that does the work of a complete set of forged tools. Each is a stronger, more efficient tool that takes cutters quickly and accurately from stock shapes of high speed steel, thus saving time, tooling, and reducing waste.

With or without ARMSTRONG TOOL HOLDERS you will be permanently tool-cured for every operation on your lathe, and you can order them now at a nominal cost.

Write for:
Circular of Acer TOOL HOLDERS for Home Workshop Lathes.

ARMSTRONG BROS. TOOL COMPANY
The Tool Holder People
340 N. Francisco Ave., Chicago, Ill., U.S.A.

arc welding manual and text book...$095

FREE!! 40 PAGE HOBIT CATALOG
Over 100 Hams—Over 300 Photos

Our new 40 page catalog—just off the press—is the "bible" of wire-welding publications. Practically every nationally advertised model is listed and many, many hard-to-get items. Planes, cutters, drills, shears, cutters, etc. Catalogue, 25 cts. Free to all.

AMERICA'S HOBIT CENTER, INC.
Dept. 156 W. 22 St., New York 11, N.Y.

60 PIECE UNIVERSAL ARBOR TOOL SET (3/32") $1.95

Includes assortment of countersinking, centering, and centering burrs, grind stones, cutoff wheels, polishing buffs, bristle polishing brush, 9 mandrel arbors, 2 arbor centers, and many accessories.

DE LUXE SET $3.95

140 Pieces

All the above in larger quantities plus many other hard to get items. Many with disposable inserts. Boxed to keep neat and easy to use. Really a $7.05 value. Will ship in any part of the world prepaid. Send check, money order, or cash.

GENERAL AIRE CO.
447 W. Sutter street

held against the face of a drill tip, supported in the tailstock, and the jaws closed down on the work while its face was held accurately parallel with the chuck face.

Chuckit flat work in this manner will help it in run dead true. The work should be carefully checked after the first roughing cut is made to see that the edges will be brought to an even thickness all around when the piece has been finally machined. The work was shifted off-center in the chuck for boring the gas chambers to fit exactly over the cylinder bores. The spark plug and screw holes were drilled in the drill press and when the spark plug holes were tapped the work on this piece was complete.

The end bearing plates were machined in the three-jaw chuck, as in Fig. 13, where the face and outer diameter were turned to size and the bearing hole accurately bored. The work was then slipped onto a mandrel held between cen-

Science and Mechanics
supported in down on theately parallelner will help out if he care-giht to an even eee has been shifted off-gas chambers ns. The spark 1 in the drill s were tapped te.chined in the here the face size and the he work was between cen-
ters, where the back and step were torned to an easy push fit in the crankcase ends. Doing the work in this manner will make the bearing hole and the step on the bearing plate concentric and center the crankshaft accurately in the crankcase when the parts are assembled.

The bronze bearings, which are pressed into the bored hole in the bearing plates, were machined in much the same manner, being first chucked in the three-jaw, drilled and reamed for the crankshaft and then mounted on a mandrel where the outside was brought to proper diameter for a good press fit in the bearing plates.

With these made up and pressed in place, the oil holes, indicated in the drawings, were drilled in each bearing plate and through the bronze bearing bushing, as indicated in the sectional view of the assembly drawing.

The center bearing, which is part of the rotary valve, is made up in two parts from two separate castings. Each half was first chucked in the four-jaw, as in Fig. 14, where the joint between the two halves was machined smooth. The screw holes, indicated in the drawings, were drilled and tapped and the two parts fastened together on a mandrel, as in Fig. 15, where the side and outer diameter were turned accurately to the dimensions called for in the drawings. The completed part is shown in Fig. 16 along with the valve.

(This article will be concluded in the next issue of Science and Mechanics.)

* Craft Prints in enlarged size for making the engine are available at $25 a set. Address, Craft Print Dept., Science and Mechanics, 114 East Erie St., Chicago 11.

Oiling Kink

OILING workshop machinery is done easily with the aid of an old automobile gas line where an oil-can spout will not reach the oil hole. Bend the gas line to a "L" shape and place one end in the oil hole. With an oil can run the oil through the gas line into the oil hole.
Building a Twin Cylinder RACING GAS ENGINE

Part 2. Gary Moore completes the making of a beautiful model gasoline engine.

BY GARY MOORE
Craft Print Project No. 61

The crankshaft of the little engine must be turned from solid steel bar stock to withstand the terrific pounding it will receive when running at high speeds. The built-up type of crankshaft would soon break down under the hammering this little engine would give it. With the steel blank cut to proper length and the ends accurately squared and smoothly faced the dimensions in the drawings were carefully transferred to the work first laying out the important center lines, as indicated in Fig. 17, and carrying them around on the ends of the stock to accurately locate the center holes for mounting the work between centers when turning the crankpins and the main part of the shaft itself. With the work completely laid out, and the lines deeply scored with a sharp scriber, the three center holes on each end were accurately drilled, care being taken to bring them all to the same depth. The steel blank was then mounted between centers in the lathe, as indicated in the drawing, Fig. 18, where one of the crankpins was turned to exact diameter and the inside of the webs faced smooth to within several thousandths of their final width to allow for facing after the rotary valves have been attached. The work was then shifted with the lathe centers in the opposite center holes, as indicated in Fig. 19, where the second crankpin was machined in the same manner as the first. The waste stock between the two crankpins was cut away, as shown in the drawing, Fig. 20, and the castings for the rotary valves were mounted in place. These castings were first sawed in two and the flat surfaces at the joint machined smooth and true for...
a perfect fit on the crank webs. Two of the valve parts were drilled and counter-bored and the other two drilled and tapped to receive the three screws which hold them in place on the crank webs. The size and location of these screw holes are clearly laid out in the drawings. With the rotary valves fastened in place the work was again mounted between centers where the inside surfaces of the valves were faced smooth and the webs brought to their final thickness. When the inner faces of both sets of crank webs were machined the work was removed from the lathe and the waste stock on either side of the main shaft was cut away including the crankpin center holes as they were no longer needed. The work was again replaced in the lathe, fig. 21, where the main shaft was brought to the dimensions in the drawings and the opposite side of each rotary valve faced smooth along with the crank webs bringing both to their proper thickness. The outer edges of the valves were faced smooth and turned to exact diameter and at the same time the ends of the crank webs were nicely rounded and all brought to exactly the same length. The ends of main shaft reduced in diameter, as indicated in the drawings, and the threads cut with the work was again replaced in the lathe, where the main shaft was brought to the dimensions in the drawings and the opposite side of each rotary valve faced smooth along with the crank webs bringing both to their proper thickness. The outer edges of the valves were faced smooth and turned to exact diameter and at the same time the ends of the crank webs were nicely rounded and all brought to exactly the same length. The ends of main shaft reduced in diameter, as indicated in the drawings, and the threads cut with the
work still in the lathe. The flywheel end of the shaft was beveled to match the tapered hole in the flywheel and the tip of the shaft threaded for the retaining nut. As each of the crankpins and the three sections of the main shaft were turned to final diameter they were brought to a smooth finish with a fine Swiss file and polished with fine well worn emery cloth. The completed crankshaft, with rotary valves attached, is shown in the photo, fig. 22, and again in the photo, fig. 23, with the center bearing, the connecting rods, and their pistons mounted in place ready for final assembly.

In machining the connecting rods the first operation was to drill the two screw holes in the big end before cutting the bearing cap off. This makes the work easier and accurately aligns the holes in each part after the cap has been cut off and the flat surfaces at the joint machined smooth. The screw holes in the big end of the rod were then tapped while those in the cap were opened out to clear the screws. The photo, fig. 24, shows one of the rods with the cap cut off and the holes drilled and threaded while the other rod has the cap screw fastened in place and the big end drilled for the crank pin. The work was next chucked in the three-jaw, as in fig. 25, where the wrist pin hole was drilled and reamed to final size. The connecting rod was then mounted on
a mandrel, as in fig. 26, where the sides were faced smooth and brought to the proper width to fit between the webs on the crankshaft. The rods were then cleaned up with a fine file and polished bright for appearance.

The pistons were machined by first chucking in the three-jaw, as in fig. 27, where the inside of the lower skirt was accurately bored to size and the lower edge faced smooth. The work was then mounted on a stub mandrel made up from a short steel bar while held in the chuck, as in fig. 28, where the outer diameter of the piston was turned to a nice sliding fit in the cylinder bore and the ring grooves cut in with a parting tool. The top of the piston was smoothly finished with a fine file and emery cloth and the wrist pin hole accurately located, center punched and drilled with the piston supported in the crotch center of the lathe. If a crotch center is not available and the drilling must be done in the drill press great care should be used in dividing the work and accurately locating the hole to be drilled in from each side. It is well to use a smaller drill first, drilling in from each side and running a larger drill and reamer through both holes at the same time.

The two wrist pins were made up from drill rod, drilled hollow and the two brass ends made up and inserted following the dimensions on the drawings closely. These are shown, along with the completed pistons and connecting rods, in the photo, fig. 29.

The flywheel was machined almost entirely in the three-jaw chuck while mounted as in fig. 30. Here the inside of the wheel was bored, the hub turned to diameter and faced smooth and to proper length and the crankshaft hole drilled. The edge and face of the rim were rough turned and the work reversed in the chuck where the turning operations were repeated. The flywheel was then mounted on a mandrel, as in fig. 31, where a light facing cut

<table>
<thead>
<tr>
<th>LIST OF MATERIALS — CARBURETOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

was accomplished. The various holes were drilled with screws which points in place, arm and completing shown mounted, shown. The timer is a piece of hard rubber and dimensions in the screws were inserted with dry binding paste from hard rubber cut to the type as described.

The timer cover was while held in
was taken on the sides and face of the rim to
insure its being concentric with the crankshaft
hole and running dead true. The wheel was
then remounted in the three-jaw chuck and
with a reamer held in the tailstock the shaft
hole was taper reamed, as called for in the
drawings, to match the taper turned on the end
of the crankshaft. This operation was accom-
plished with care in mounting the wheel squarely
in the chuck and in using the reamer and when
the flywheel was finally mounted on the crank-
shaft it ran dead true.

The timer lever casting was mounted in the
four-jaw chuck, as in fig. 32, where the large
hole was bored for mounting it on the rear
bearing of the engine. The balance of the work
was accomplished in the drill press where the
various holes were drilled and tapped for the
screws which hold the breaker arm and contact
points in place. An ordinary automobile breaker
arm and contact points are used and these are
shown mounted in place in the photo, fig. 33.
The timer housing was made up from a small
piece of hard rubber turned and bored to the
dimensions in the drawings and drilled for
the screws which hold it in place and the neces-
sary binding posts. The rotor was also made up
from hard rubber, turned to diameter and should-
ered down part way to receive the brass brush
as described and illustrated in the drawings.
The timer cover was machined from a casting
while held in the chuck, as in fig. 34, where it
was bored for a snap fit on the liner housing
and the center hole drilled. The balance of the
holes for fastening it in place, were drilled in
the drill press the size and location of these
being accurately laid out in the drawings. The
completed fully assembled timer is shown in
fig. 35.
The carburetor is built up from several cast-
ings with the balance of the parts made up from
brass rod and other material found around the
shop. Work was started on the gas chamber
by chucking it, as shown in fig. 36, where it was
bored to proper depth and diameter and the gas
connection hole in the bottom drilled and tapped
at this same chucking. The balance of the holes
were drilled in the drill press following the
dimensions in the drawings. The carburetor
body casting was a little more difficult to
machine. This required the use of an angle plate
for facing the mounting flange with the work
strapped to the angle plate and that in turn
mounted on the faceplate of the lathe. In cross-
drilling the large hole for the throttle the work
was held in the four-jaw chuck where the hole
was drilled and reamed to proper size and the
boss faced smooth for a tight fit against the
throttle flange and lever. The throttle was made
up from bar stock, turned to the dimensions in
the drawings and the intake hole cross-drilled.
The gas chamber cover was machined from the
casting furnished for this part, chucking by the
lug cast on for this purpose, and turning to a
good snap fit on the gas chamber. Reversed in
the chuck the top was faced smooth and the
lug cut partly away and the fine needle valve
hole drilled. The main jet needle valve was made
up from brass rod, turned to size and knurled
and threaded and the hole drilled in its end for
the nickel silver needle which was soldered in
place. It was then filed to a fine point while the
work was held in the chuck with the lathe run-
ning at high speed. The cork float was made up
from an ordinary bottle cork chucked in the
lathe and turned to shape with an ordinary
sandpaper tool made by gluing a strip of sand-
paper to a thin piece of wood. The hole for the
needle valve was drilled and the cork given a
thin coat of shellac. The needle valve was made
up as described in the drawings and inserted in
the cork float. The various other parts were
made up from brass rod and other material
found around the shop. The completed parts of
the carburetor are shown in the photo, fig. 37,
ready for assembly.

With the various parts of the little motor
completed the final assembly began. Much hand
fitting was required and great care was taken to
see that each moving part worked properly
without binding anywhere. The crankshaft with
its rotary valve assembly was inserted in the
crankcase and the rods with their pistons were
fastened in place. The end bearing plates were
slipped on the shaft and screw fastened to the
crankcase, the carburetor was mounted to the
intake flange of the cylinder block and the
MODELMAKERS
JEWELERS . . . INSTRUMENT MANTR.

ARBOR PRESS

The new "K" Press is recommended for high speed production and assembly work. Provides fine sensitivity control for pressing small shafts, gears, wheels and bearings. Frame, table and standard are gray iron well braced and accurately machined. Ram take-up provided. Table and standard removable for large work. Finish machine gray. Height 7 5/8"; over table 2 1/2"; over base 4 1/8"; ram 3 1/2" x 1/4"; ram travel 2 1/2"; approximate pressure 250 lb. See your dealer or order direct $6.00 plus postage, wt. 7 lb. Prompts delivery. (Straightening attachment 65c between brackets $3.60 plus postage, wt. 2 lb.)

H. D. HERBER, Tool Specialties
2621 Brook Dr., KALAMAZOO 32, MICH.

MINIATURE ENGINES
Gasoline—Steam
Air—Locomotive

THE WORLD'S
MOST FASCINATING HOBBY

Build them yourself — In your own shop
With your own tools

Send 10 cents for my illustrated catalogue listing the world's largest selection of miniature engine castings and drawings.

WAYNE MILLER
Suite 204
Engineering Bldg., Chicago 6, U.S.A.

MODEL: Gasoline Engine
Ready to Run
A precision built and engineered single cylinder FOUR-CYCLE model gasoline engine; adjustable valves; steel alloy and cam gears; a real innovator system: speed 350 to 3,000 rpm; develops approximately 1/8 hp. Bench tested and ready to run. Available with stationary or marine engines. Full instructions. Lots of fun. Price: $40.00 complete, with cell, condenser and starting rope. Immediate delivery.

The THOMPSON ENGINEERING CO.
216 Winchester Place, Grand Rapids 2, Mich.

MOTO-TOOL

THE "POCKET-SIZE" MACHINE SHOP

PUT THIS "WAR VETERAN" TO WORK

Tough grinding and polishing jobs in tool rooms and machine shops fade away under the speed and versatility of Dremel Moto-Tools. Thousands of Moto-tools helped establish production records in plants such as General Electric, Washburn-Hartford, Consolidated Air, Northrup and Douglas. These earned the respect of the armed forces in the saving repair depot.

Only Moto-Tools Have All These Features
A Moto-2 Model 2 Moto-Tools develops a power of approximately 37,000 rpm. Weights only 1/3 lb. Shaped to fit the hand and work. Fitted with a self-reversing colorile. Running gear for vibrationless operation. Uses 110-120 A.C. or D.C. (Direct current or alternating current). Automatic oiling system keeps bushing in good order for longer life. The Moto-Tools can be used in any position; always in easy reach of the operator.

MOTO-TOOL KIT

MONEY-BACK GUARANTEE
Ask your Dealer about Moto-Tools and accessories. If he does not handle Moto-Tools, he won't know. The Moto-Tools is ready to pay our money. If in cash in full accompanies order. Price $25.00, plus postage. Write for FREE CATALOG.

IN A DIY WHEEL AND SHAFT

DREME MFG. CO., Dept. 176-A, RACINE, WISCONSIN

27,000 R.P.M.

MOTO-SAVER COMING! Dremel MOTO-SAW . . . the sensational electric power hand tool . . . with FREE GUIDE for details is available, at $15.00.

R S S P E R N I N G

A FEW OF THE JOBS THAT CAN BE DONE BETTER...